
TOPCON SUPER D (71 A)

GUIDE for REPAIR

TOKYO OPTICAL CO., LTD. TOKYO JAPAN

Fig.2 Flash socket ring

riash socket ring

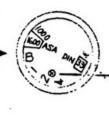


Fig. 3

İ

STEPS IN DISASSEMBLING

3. Detach the flash unit bayonet assembly.

Unscrew four fixing screws.

4. Detach the left top cover plate.

Detach the flash socket ring with the plate wrench (32A15O3-T) (Fig.2)

(Fig.1)

(Fig.3)

Detaching the Right Top Cover Plate

1. Set the film speed plate to its

maximum setting. (Fig.3)
Set ASA 1600 and DIN 33 in the windows.

2. Set the shutter speed dial to B.

3. Detach the shutter speed dial plate.

Unscrew one fixing screw.

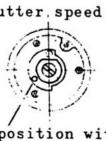
CAUTION

- 1) Do not lift up the shutter speed dial, as the pulleys and gears inside the body will revolve because of the
 - spring tension. This will result in a change of relationship in the coupling with the ASA film speed

scale and, furthermore, will damage

the exposure meter.

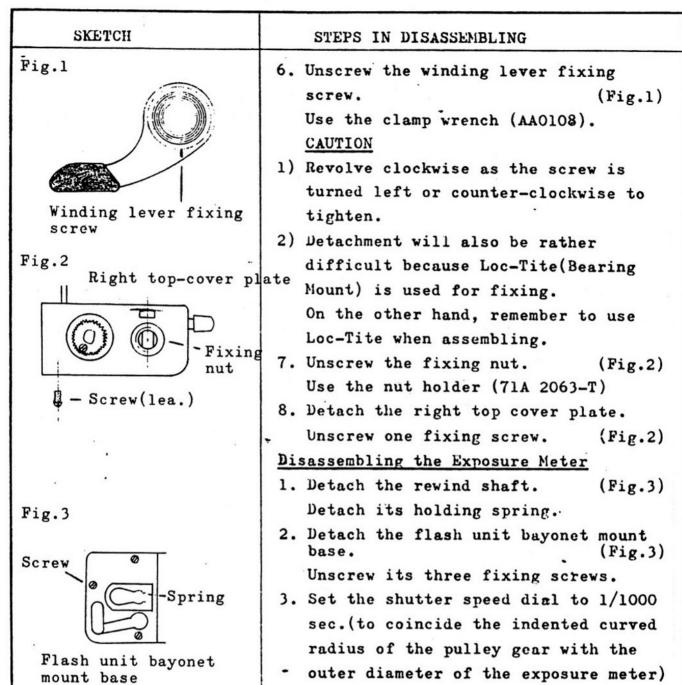
2) Detach the shutter speed dial after fixing the pulleys and gears from


moving with the tooling setscrew (46A 5090-T or V 1.4 x 8S).

4. Set the positions of the pulley and gears.

Use the tooling setscrew (46A5090-T) or a V 1.4 x 8S. (Fig.4)

5. Detach the shutter speed dial.


Fig.4
Shutter speed dial

Set position with tooling setscrew

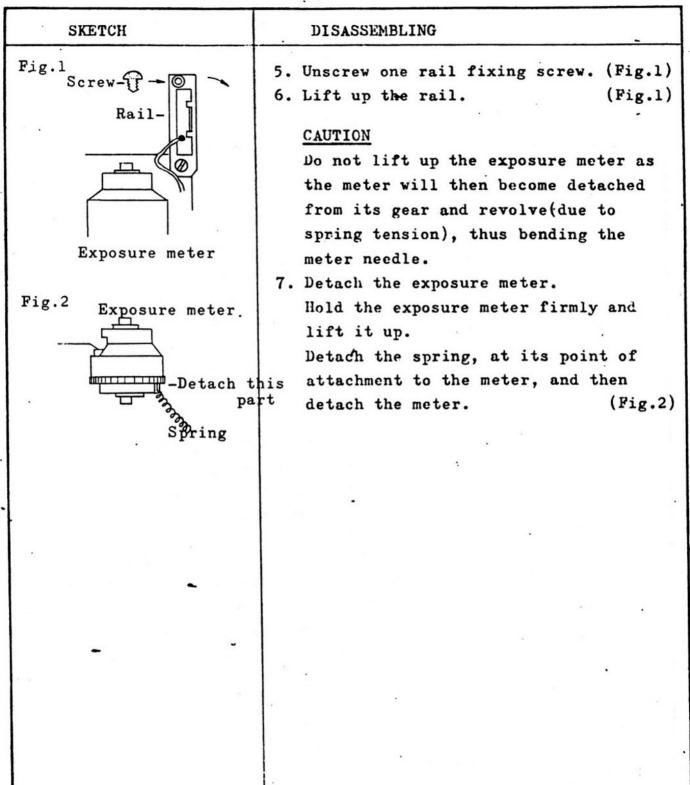
bcrew

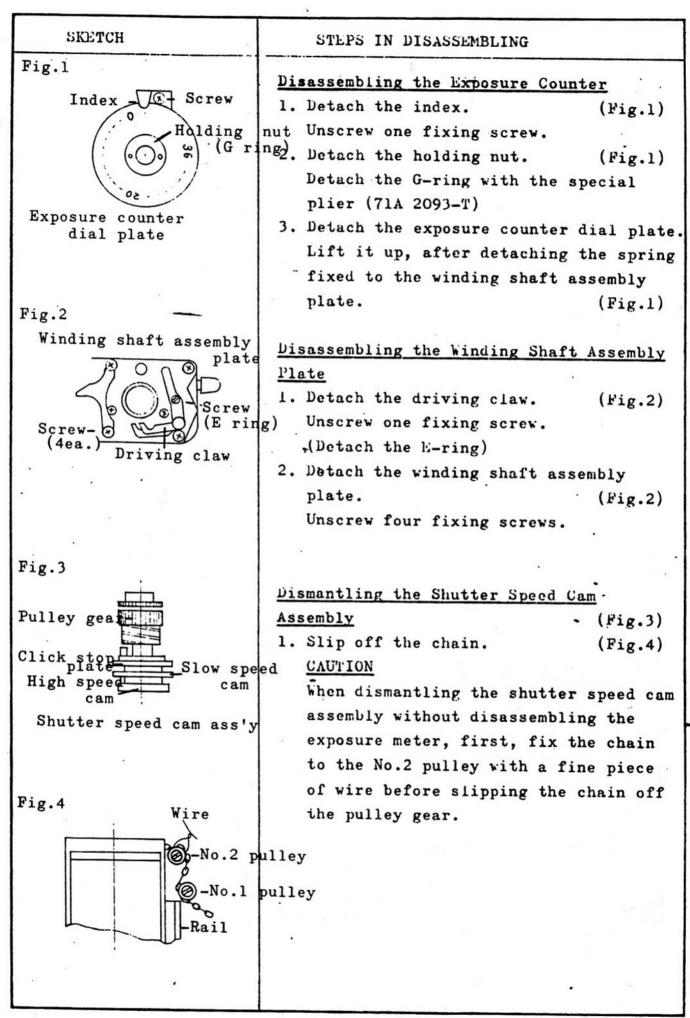
pulley.

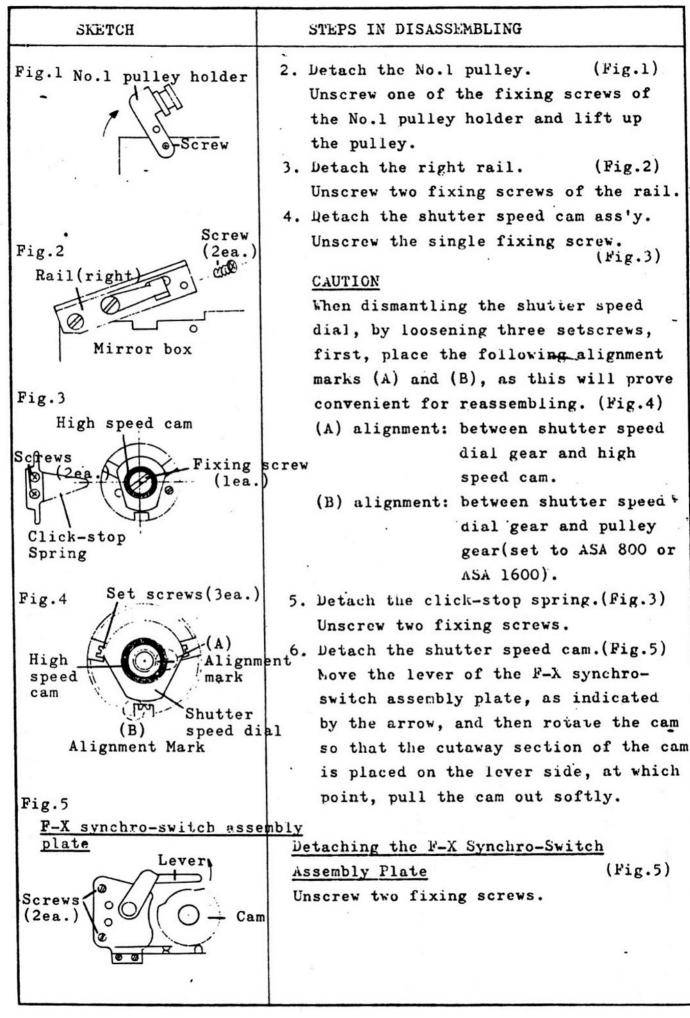
No.4 pulley

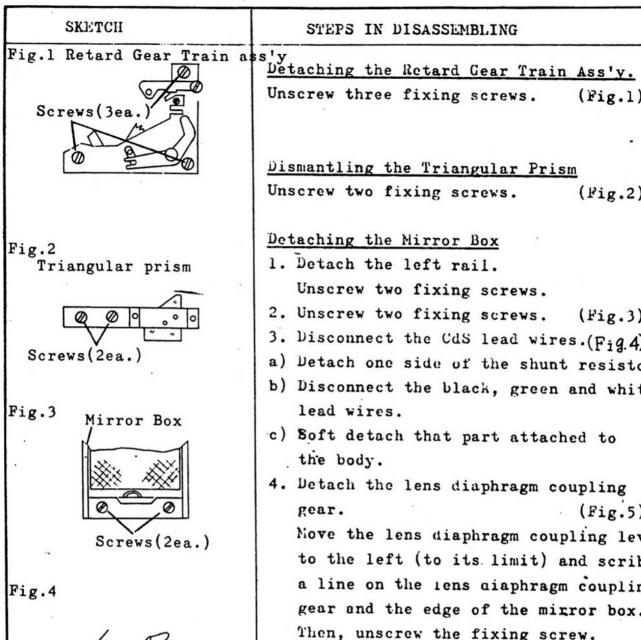
Fig.4

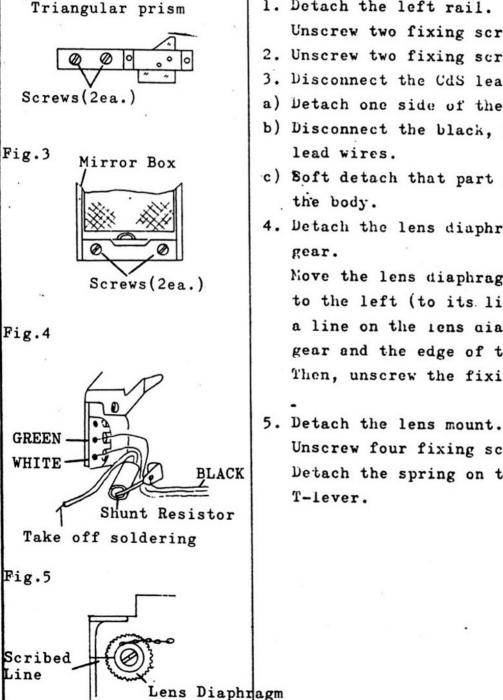
Chain


Exposure window


and slip the chain off the No. 4

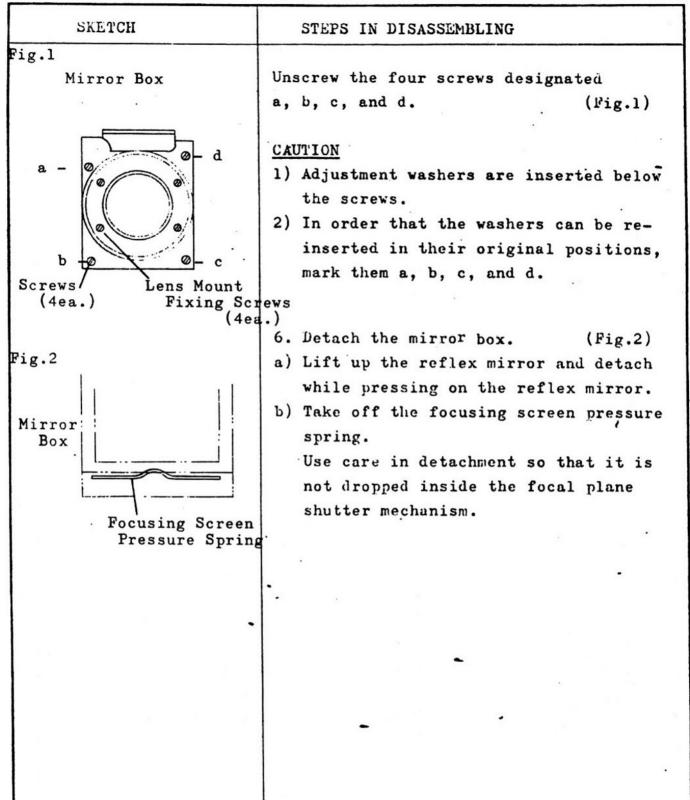

4. Detach the top deck exposure window.

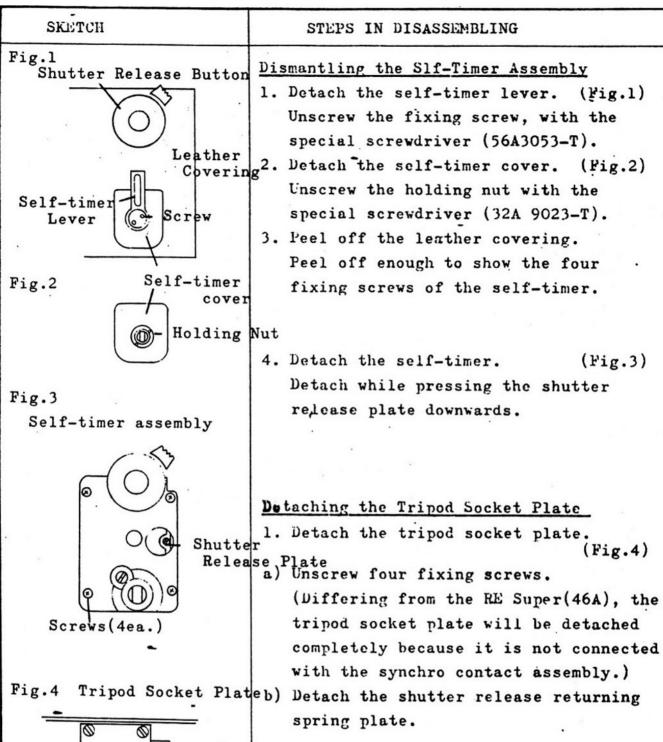

(Fig.4)

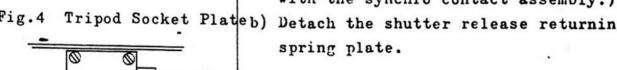

Unscrew two fixing screws.

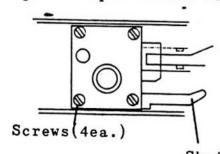
Coupling Gear

STEPS IN DISASSEMBLING


Dismantling the Triangular Prism Unscrew two fixing screws. (Fig.2)


(Fig.1)


Detaching the Mirror Box


- Unscrew two fixing screws.
- 2. Unscrew two fixing screws. (Fig. 3)
- 3. Disconnect the CdS lead wires. (Fig.4) a) Detach one side of the shunt resistor.
- b) Disconnect the black, green and white
- c) Soft detach that part attached to the body.
- 4. Detach the lens diaphragm coupling gear. (Fig.5) Move the lens diaphragm coupling lever
 - to the left (to its limit) and scribe a line on the tens diaphragm coupling gear and the edge of the mirror box. Then, unscrew the fixing screw.
- Unscrew four fixing screws.

Detach the spring on the side of the T-lever.

Shutter Release Returning Spring Plate

STEP IN DISASSEMBLING

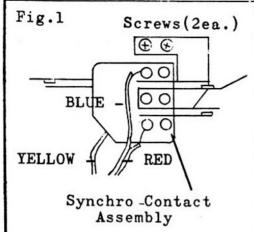


Fig.3

Soldering

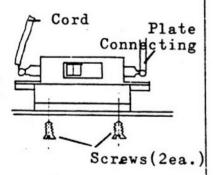
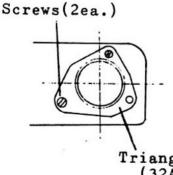



Fig.4

Detaching the Synchro Contact Assembly

Detach the synchro contact assembly.

(Fig.1)

Unscrew two fixing screws.

CAUTION

For exchanging synchro contacts only, disconnect the solderings of the red blue and yellow lead wires and leave these lead wires, as they are.

Detaching the Battery Compartment

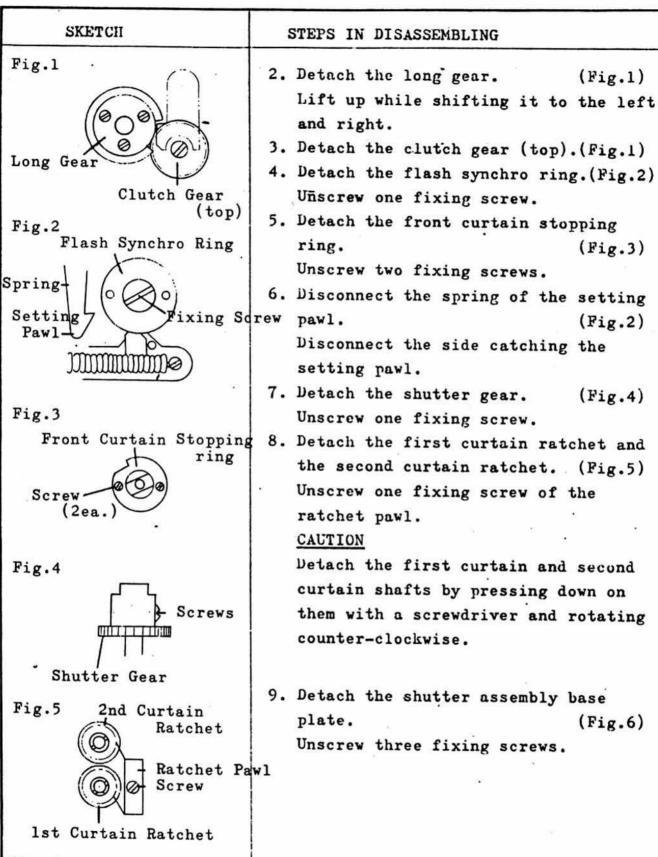
Detach the battery compartment. (Fig. 2)

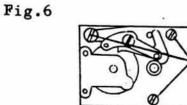
Unscrew three fixing screws.

Disconnect the soldering of the switch.

Detaching the Battery Switch

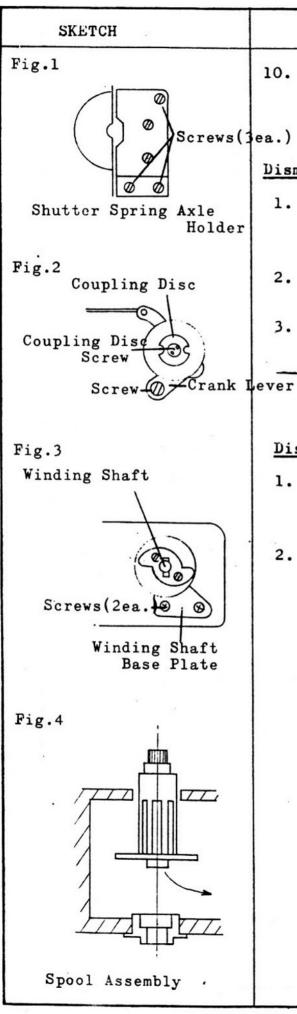
Detach the battery switch. (Fig.3) unscrew two fixing screws.


CAUTION


When exchanging the switch only, disconnect the solderings of one lead wire and the connecting plate.

Dismantling the Focal Plane Shutter Assembly

Unscrew two fixing screws. (Fig.4)
 Detach the triangular plate.


Triangular Plate (32A 1071)

Screws (3ea.)

Shutter Assembly Base Plate

STEPS IN DISASSEMBLING

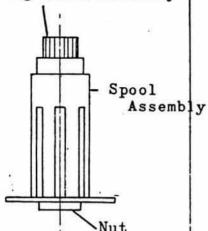
10. Detach the shutter spring axle holder. (Fig.1)
Unscrew three fixing screws.

Dismantling the Crank Lever

- Detach the motor drive triangular plate. (Fig.4 of page 10)
 Unscrew two fixing screws.
- 2. Detach the coupling disc. (Fig.2)
 Unscrew one fixing screw.
- 3. Detach the crank lever. (Fig.2)
 Unscrew one fixing screw.

Dismantling the Winding Shaft

- 1. Detach the winding shaft base plate. (Fig.3)
- Unscrew two fixing screws.


 2. Detach the spool assembly. (Fig.4)
- Lift up the winding shaft and detach the spool assembly, by pulling out in the arrow-indicated direction.

KEY POINTS IN ASSEMBLING

Fig.1

Winding Shaft Assembly

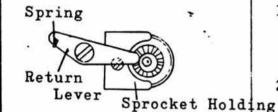
Dismantling the Spool Aeembly

1. Detach the winding shaft assembly.

(Fig.1)
Hold the top end firmly and unscrew

Hold the top end firmly and unscrew the nut at the bottom end.

CAUTION


Do not damage the gear. (Fig.1)

2. Take off the spool assembly.

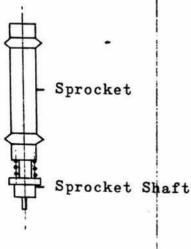
CAUTION

Do not lose the washer and spring which are inserted between the winding shaft assembly and the spool assembly.

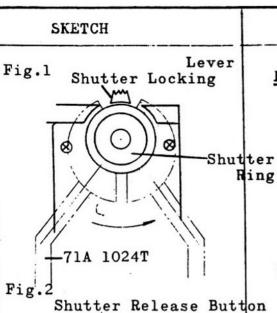
Fig.2

Dismantling the Sprocket

 Detach the return lever. (Fig.2)
 Unscrew its fixing screw and detach the spring.


Detach the sprocket holding plate.
 Unscrew one fixing screw.

3. Detach the sprocket. (Fig.3)
Pull out the sprocket shaft.


CAUTION

Align with the slot in the body when pulling the sprocket shaft out.

Plate

Base

Shutter Locking

Lever

STEPS IN DISASSEMBLING

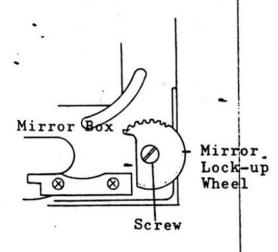
Dismantling the Shutter Locking Lever

Detach the shutter locking lever. (Fig.1)

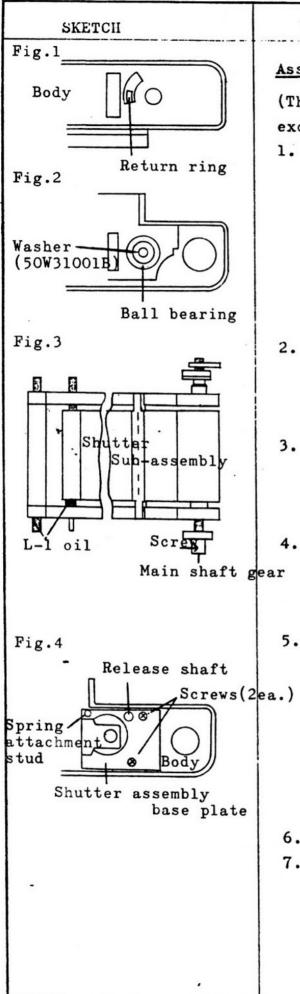
Unscrew the shutter ring with the special tooling wrench 71A 1024-T, by revolving in the counter-clock-wise direction.

CAUTION

- A click-ball for the shutter locking lever is inside the shutter button assembly, so care must be used not to lose it.
- 2) Leave some space on both sides of the shutter locking lever, when clamping with the special tooling wrench, to prevent scratches on the finish of the lever.


Detaching the Mirror Lock-Up Wheel

Detach the mirror lock-up wheel. (Fig. 3)


Unscrew its fixing screw.

CAUTION

When unscrewing the fixing screw of the mirror lock-up wheel while it is still attached to the body, the lock-up shaft inside the body will become detached at the same time and fall into the body. Therefore, a small screwdriver should be used from inside the mirror box to hold the device from falling into the body when unscrewing the fixing screw. (Fig.4)

KEY POINTS IN ASSEMBLING

Assembling the Focal Plne Shutter

(The following has been written for the exchange of the focal plane shutter, too)

 Apply a very small amount of TOKO
 L-l oil to the friction surface of the return ring. (Fig.1)

CAUTION Fluidity of the TOKO L-1 oil is very

great and, therefore, only a very little should be used, especially because of the danger to other parts.

2. Insert the ball bearing and washer (50W 31001B) in the ball bearing base

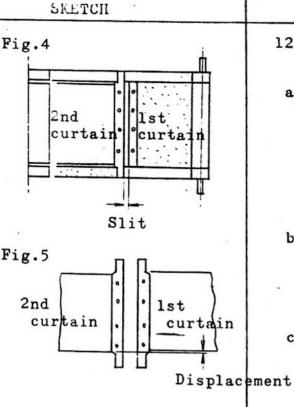
of the shutter's main shaft. (Fig.2)

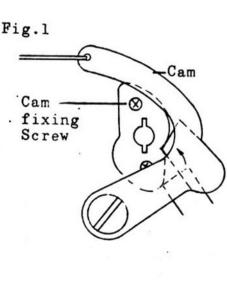
- Insert from inside the body.

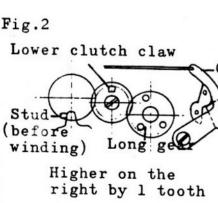
 3. Detach the main shaft gear from the shutter sub-assembly. (Fig.3)
- Unscrew one fixing screw with a .
 screwdrive.
 4. Apply some TOKO L-1 oil to the
- friction surface of the shutter sub-assembly. (Fig.3)

the body.

- Apply a very little with a brush.


 5. Attach the shutter sub-assembly to
 - Wind the shutter curtains once completely around the drum and fit to the ball bearing base; then fix the shutter assembly baseplate, with two fixing screws, while checking the action of the release shaft.


(Fig.4)


- 6. Fix the spring attachment stud.7. Attachment of the second curtain shaft
- (Fig.5)

 Fit the brass metal plate to the shaft and place inside the body; insert the washer from the base side and screw in the ratchet wheel.

SKETCH KEY POINTS IN ASSEMBLING Fig.5 8. Attachment of the first curtain shaft. Insert the Delrin pulley and brass 1st Curtin 2nd Curtin metal plate on the shaft and place shaft shaft inside the body; insert the washer Delrin from the base side and screw in the pultey ratchet wheel. Brass metal 9. Attachment of the shaft holding plate. plat/e/ Washer (Fig.1) (50W31001B) First, fit the second curtain shaft to the shaft holding plate and insert Ratchet wheel a tooling shaft (3mm diameter) in the Fig.1 opening for the exposure meter shaft: then push the shaft holding plate in 3mmø tooling shaft the arrow-indicated direction, while pressing down at the same time, and, fianlly, fix with three fixing screws. Then cover with a trianguarly cut Triangular piece of Teflon tape. teflon holding tape 10. Attachment of the main shaft gear. plate Attach the gear that was taken off in 3. Fig.2 Play in the axial direction(vertically Main shaft gear must be held to between 0.05 to 0.1mm. If play is too large, insert washers between the shutter assembly baseplate and the shutter's main shaft. Screw Washers are available in 0.05mm and O.lmm thickness. 11. Attachment of the ratchet pawls. (Fig.3) Screw-After final tightening of the ratchet wheels (while pressing down from Ratchet pawl above), attach the ratchet pawls with Ratchet wheels one screw. Next, wind the ratchet wheels. (Eliminate curtain slack.) First Curtain...3-1/4 revolutions. Second Curtain .. l revolution.

KLY POINTS IN ASSEMBLING
12. Checking slit and run of the

curtains. (Fig.4)

a) Slit: The Slit between the first and second curtains must be parallel or within 0.5mm in displacement. (Hold the second curtain and check while moving the first curtain.)

b) Vertical displacement:

Displacement vertically of the

must be within 1mm. (Fig.5)

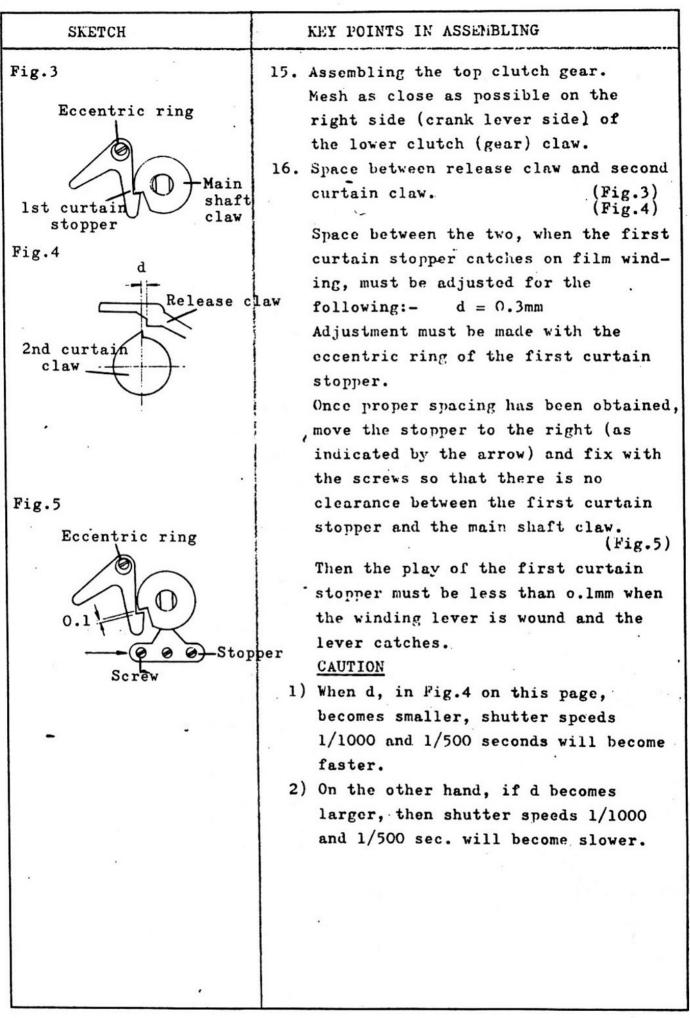
c) Run: 1rregularities in the running of the curtains requires retired checking attachment of the main shaft gear in 10.

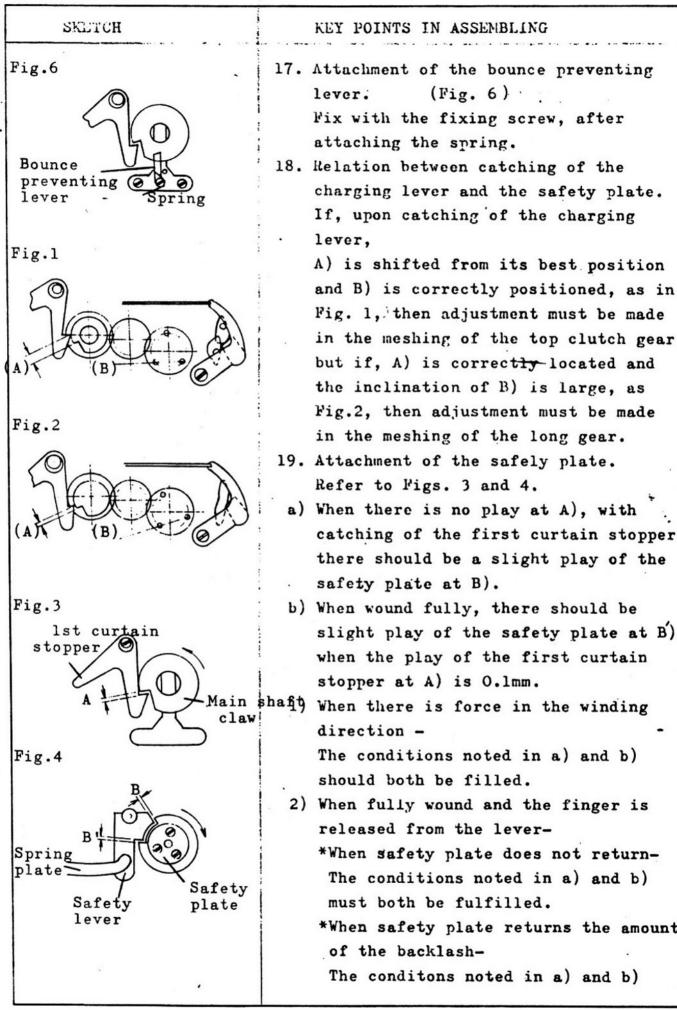
fisrt and second curtains

13. Catching of the crank lever. (Fig.1)

The charging lever will catch
slightly, as the winding lever is
stroked, when it passes the vertex
of the winding shaft cam and the
crank lever should be pushed strongly
so that it is agaist the base of the
winding shaft cam (as indicated by
the arrow) at this time.

-The attachment hole of the safety
plate on the long gear must be higher
Charging by about 1 gear tooth on the right


14. Assembling the lower clutch gear.


lever side when the crank lever catches

on the winding shaft cam. Assemble the lower clutch gear so that its claw is topside in the above conditions.

NOTE:

The shutter's main shaft must not be wound at this time.

(Fig. 6) Fix with the fixing screw, after attaching the spring.

18. Relation between catching of the charging lever and the safety plate. If, upon catching of the charging

A) is shifted from its best position

Fig. 1, then adjustment must be made in the meshing of the top clutch gear, but if, A) is correctly located and the inclination of B) is large, as

in the meshing of the long gear. 19. Attachment of the safely plate.

a) When there is no play at A), with catching of the first curtain stopper, there should be a slight play of the

b) When wound fully, there should be slight play of the safety plate at B), when the play of the first curtain stopper at A) is O.lmm.

The conditions noted in a) and b)

2) When fully wound and the finger is released from the lever-*When safety plate does not return-

*When safety plate returns the amount of the backlash-The conditions noted in a) and b)

must both be met. whether return

- action is strong or weak.
- 3) If force is applied to the sprocket with the fingers in the direction of the film tension, when fully wound, the play of the safety plate at B) sould be very little, say, 0.1mm.
- 4) Safety plate engagement with safety lever with abnormal operations.

 (Fig.1)
 Safety lever does not engage safety

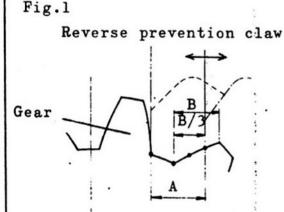
Safety lever does not engage safety plate with strong or forced winding action while the shutter release button is being depressed.

REASON:

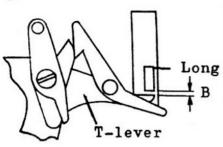
The front surface of the reverse prevention claw hits the face of the gear in the rotating direction and backlash does not take place. Eliminate by adjusting backlash.

Backlash Asjustment: In Fig. 1, the tip of the reverse

prevention claw must be within the range indicated by A), with normal winding action, or forced winding action,


If the tip is outside this range, then loosen the fixing screw of the reverse prevention claw and adjust to the left or right (as indicated by the arrow in Fig. 1).

20. Attachment of the flash synchro ring


Then, attach the flash synchro ring with its fixing screw.

with two fixing screws.

Fix the front curtain stopping ring

Adjustment range of

Clearance between the T-Lever and the Long Lever

B= 0.5mm when fully wound. (Fig.1)

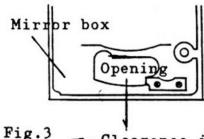
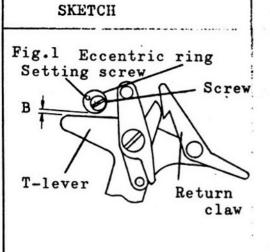
Adjust with the eccentric limiting

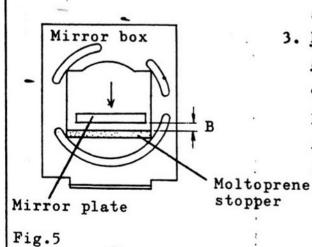
Long lever plate of the release clutch lever,

which can be seen in the oval-shaped opening on the lower part of the mirror box. (Fig.2)

(Fig.3)

Fig.2


Fig.3 —Clearance_increase

Return lever Coupling wire 2

Return Coupling lever attachment shaft

Increase

KEY POINTS IN ASSEMBLING

1. Clearance between the T-Lever and
Eccentric Ring (B) (Fig. 1)

B = 0.2mm when fully wound.

Loosen the setting screw and fixing screw, then adjust the eccentric ring.

After tightening the screws, apply lacquer to the screw heads.

CAUTION:

with winding action and will only
swing down when the shutter is
released.

2. Clearance between the Return Lever and

When B = 0, the mirror will stay up

the Return Claw (B) (Fig. 2)

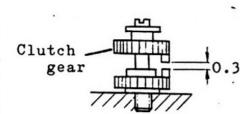
Maximum clearance of B = 0.5mm is

obtained with winding action.

Detach the coupling wire, on the return lever side, and adjust by winding the wire in or letting it out, Coupling wire on the attachment shaft.

CAUTION:

If there is too much clearance, the reflex mirror will not swing up . sufficiently.

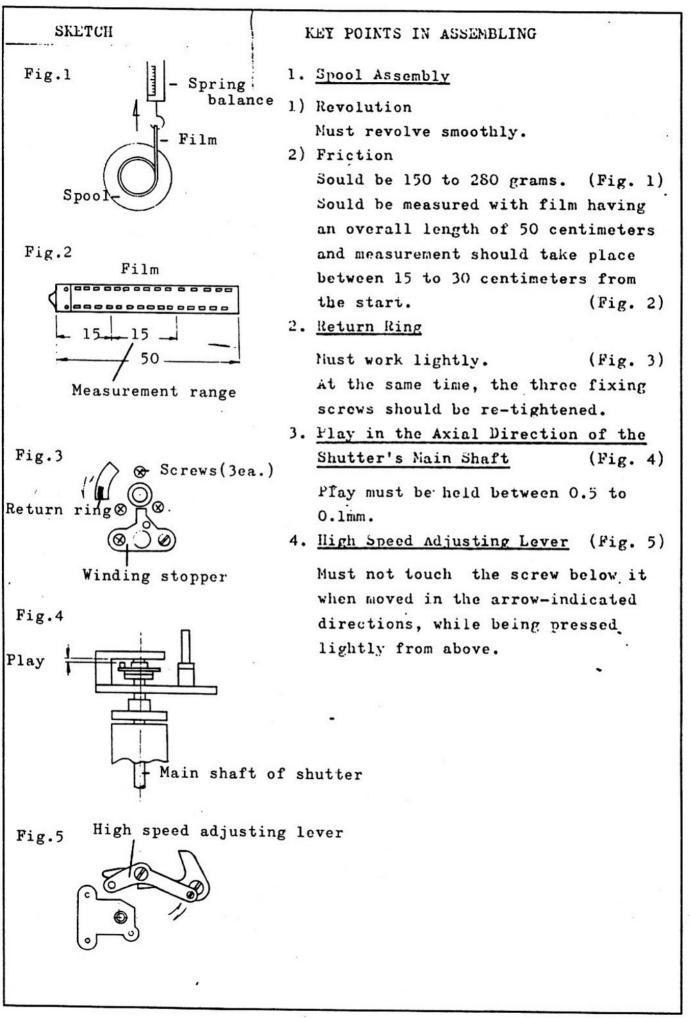

3. Relationship between Mirror Swing-Up

and Shutter Release (B) (Fig. 4)

The shutter release position is B = 5mm.

Adjust by bending the first curtain stopper, as indicated.

Decrease lst curtain stopper

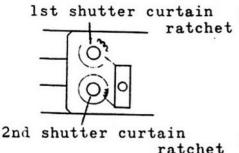

T-lever

Release clutch gear

1. Relation between Release of Clutch
Gear and Release of T-Lever (Fig. 1)

The T-Lever should be released after the clutch gear moves 0.3mm after release action.

Adjust by moving the screw of the release clutch lever in the arrow-indicated directions. (Fig. 2)
Apply EC 847 (3M) to the head of the screw.



SKETCH

KEY POINTS IN ASSEMBLING

Fig.1

1. Shutter Adjustment

1) Running time of the first shutter curtain must be 15 ±0.5m.s. (Fig. 1) Adjustment:

Adjust with the first shutter curtain ratchet.

2) Irregularities in exposure time. (Fig. 1)

Adjustment:

Fig.2 Speed adjusting screwAdjust with the second shutter curtain 1/1000 ratchet.

3) Shutter speeds Adjustment:

Page 61)

In order to speed up or slow down all shutter speeds from 1/60 to 1/1000 second, adjust the speed adjusting screw.

(Fig. 2)

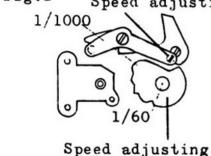
In order to speed up or slow down specific shutter speeds, adjust the speed adjusting rotary cam.

(Refer to Adjustment Standards on

(Fig. 3) 4) F-setting Time from switch-in until first

be 10 +2 m.s.

shutter curtain begins its run should


Adjust the clearance of the F-setting. (Fig. 3) 5) X-Setting

Time after first shutter curtain completes its run until switch-in should be +0.7/-0.3 m.s.

Adjust the clearance of the X-setting.

NOTE:

Electronic flash units should illuminate while the shutter is fully open at 1/60 second.

rotary cam

Fig.3 X-setting D D 2 2

F-setting

Spring

LLlever screw

Fig.1

Long lever

(Fig. 1)

Mirror Lock-Up

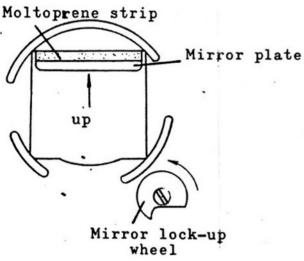
wheel

Screw

Mirror lock-up

Attach the L-lever to the mirror box with its fixing screw.

Then.


insert the mirror lock-up shaft into the mirror box, attach the mirror lpck-up lock-up wheel and fix with the fixing screw.

(Fig. 2) Check: 1) Turn the mirror lock-up wheel and check lock-up action.

The wheel should stop precisely. 2) The Wheel should rotate smoothly

and not be heavy.

Fig.2

Exposure Counter

KEY POINTS IN ASSEMBLING

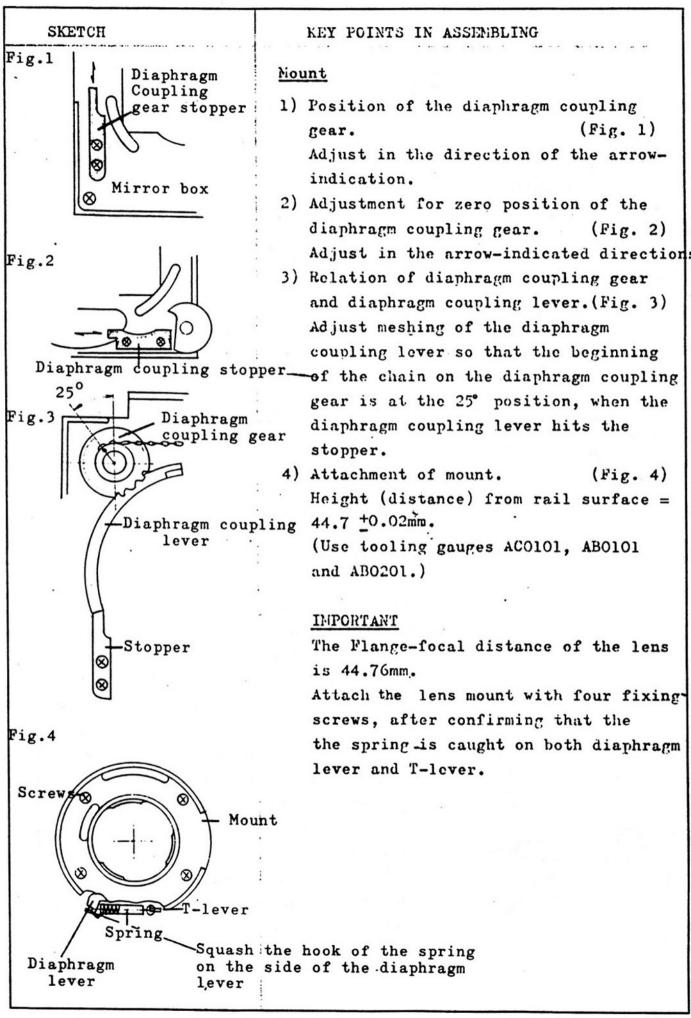
1) Returning action

There must be some clearance between
the driving claw and exposure counter
ratchet when the back cover is opened,
with the eccentric gear in the position
shown in Fig. 1.

2) Advancing action

(Fig. 1)

(Fig. 1)


The driving claw should advance the exposure counter and the fixed pawl should engage each ratchet teeth, with each complete action of the

winding lever.

Relation of the driving claw and ratchet gear: (Fig. 2)

B = A/2, before winding action.
Position of the eccentric screw

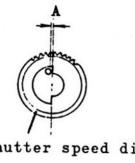
Hust be shifted to the left, before winding action.

KEY POINTS IN ASSEMBLING SKETCH Fig.1 Chain 25° 1) Confirm whether the attachment point Diaphragm coupling Diaphragm gear Fig.2 adjustments.) Right gear chain Fig.3 U-setscrew (2ea.) Dial gear the three setting screws securely. Fig.4 pulley Wind the left pulley chain in the chain clockwise direction fully, agaist Chain upon attachment Fig.5 V-setscrew

- of the diaphragm coupling gear is at the 25° position, when the diaphragm coupling lever is moved in the arrowindicated direction until it stops. (Refer to Fig. 3, page 29, lens mount
- 2) Insert the gear and chain assembly in the shutter dial axle, taking care to see that the chain is not twisted but straightened out on the diaphragm coupling gear and right gear. (Fig. 2)

(Fig. 1)

Insert the dial gear, with the click cam, at the position for "B". As illustrated, align the stud of the dial gear for "B" position and tighten


However, the dial gear must be set to coincide to the preciously drilled cavities for the setting screws.

spring tension and, from that point, return the pulley to point A, by more (Fig. 4) than one to two revolutions. (Nore than one revolution up to two revolutions is specified because the fully-wound positions differ according to the spring power.)

4) Connect the right gear chain and the left pulley chain, with the click cam in the condition for "B". (Fig. 5) (See that the chain is not twisted when connecting.)

Fig.1

KEY POINTS IN ASSEMBLING

Shutter speed dial

Diaphragm

coupling

gear

Shutter speed

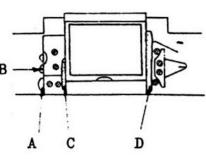
plate

lever

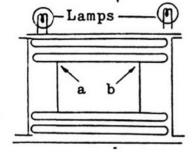
dial

A is 1mm, as illustrated. Fix the setting screw of the dial gear in this position.

5) Wind the right gear chain so that


6) When assembling the shutter speed dial, mesh with the gear at a point as near as possible to the stud of the dial gear. (Fig. 6)

A, in this case, should be as small as possilbe.


7) Cheking Method (Fig. 1) Set the ASA speed to 25 and the shutter speed dial to 1/1000; move Chain connecting the diaphragm coupling lever in the arrow-indicated direction as far as it will go, in which case -Diaphragm coupling

a) There should be some clearance at A, and b) There should also be some clearance

at B.

Moltoprene Strips for Prevention of Light Leakage

Moltoprene strips should be inserted at four places, or A, B, C, and D. (Fig. 1)

Checking Method

- As in Fig. 2, there should be sufficient illumination with lamps and positions a and b should be checked.

If the light cannot be seen when the shutter curtain is pressed slightly, it will be quite satisfactory.

BLACK wire Window

Fig.2

Rail

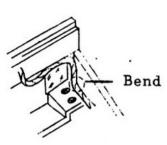
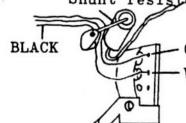
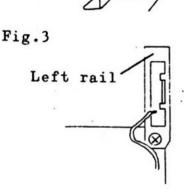
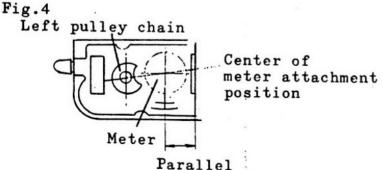
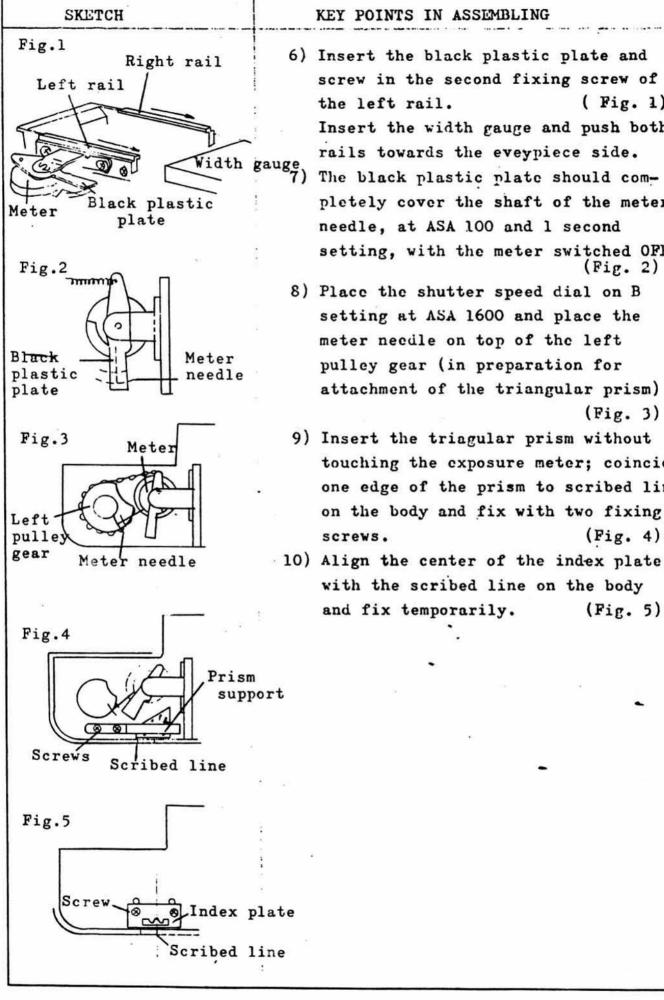




Fig.2 Shunt resistor

GREEN WHITE

Exposure Meter


exposure meter to the body. (Fig. 1) Use Pliobond (Goodyear) and bend the lead wires so that they will not cover the meter window.


1) Cement the lead wires of the CdS and

- 2) Solder the three lead wires of the CdS and the lead wires of the exposure meter. (Fig. 2) Take care that the solder is not splattered.
- 3) Screw in one fixing screw of the left rail, on the eyepiece side. (Fig. 3) 4) Turn the open side of the left pulley
- chain towards the center of the exposure meter attachment position, by rotating the shutter speed dial. (Fig. 4) 5) Assemble the exposure meter with its needle parallel to the rail (gear meshing position is not

specially specified.)

(Fig. 4)

KEY POINTS IN ASSEMBLING

6) Insert the black plastic plate and screw in the second fixing screw of (Fig. 1) the left rail. Insert the width gauge and push both rails towards the everpiece side.

The black plastic plate should completely cover the shaft of the meter needle, at ASA 100 and 1 second setting, with the meter switched OFF.

pulley gear (in preparation for attachment of the triangular prism) (Fig. 3) 9) Insert the triagular prism without touching the exposure meter; coincide one edge of the prism to scribed line

10) Align the center of the index plate with the scribed line on the body and fix temporarily. (Fig. 5)

(Fig. 4)

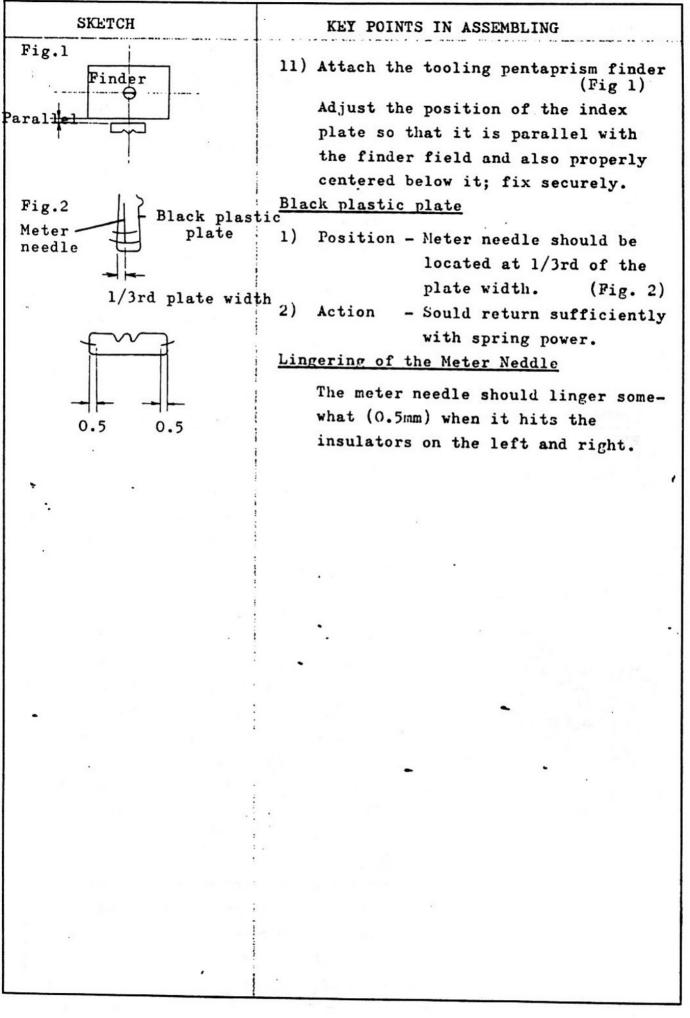


Fig.1

Exposure Meter Adjustments

- Shunt resistor
- Fig.2 +EV Inclination Brightness
- Fig.3 Setscrews

Pulley gear

Eccentric shaft

Meter

1) Adjustment of error inclination. Shunt off electricity by inserting the shunt resistor in the wiring circuite (Fig. 1) and equalize the errors for EV6 and EV15. (Refer to the wiring circuite on

Page 62.) Error inclination, in this case, is understood as being the difference in the errors at EV6 and EV15. or error at EV15 minus error at EV6, as

Shunt resistors (Rs) available are :-

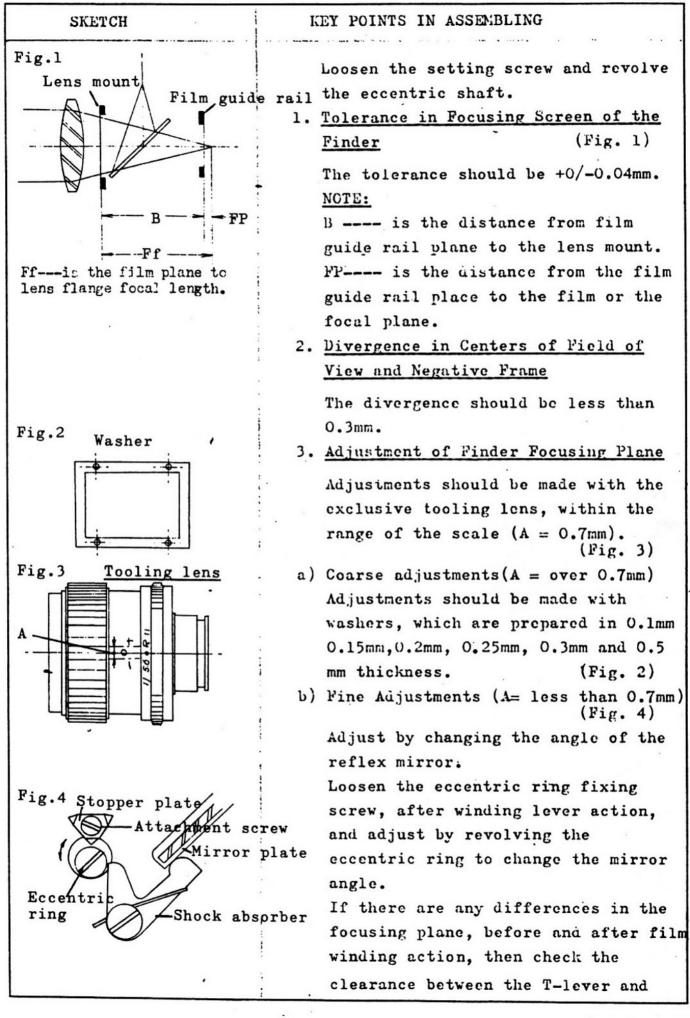
(Fig. 2)

(page 63)

4,5,6,7,8,9,10,(11),(12),(15) and (20) K Ohm but, for the purpose of making adjustments, those four types in brackets will be quite sufficient.

The Standard value is based on

P = 63 (see table 2).


a) Coarse adjustments

indicated in EV.

2) Exposure meter revolution. Revolve the exposure meter around its vertical axis and adjust uniformly from low to high sensitivity ranges, coinciding as much as possible with zero reading at EVII.

Pull up the pulley gear and change the position in which the pulley gear meshes with the meter's gear. NOTE:

Hold the exposure meter firmly, when pulling up the pulley gear, as it is always spring-tensioned to prevent backlash of the gear. b) Fine adjustments (Fig. 3)

SKETCH

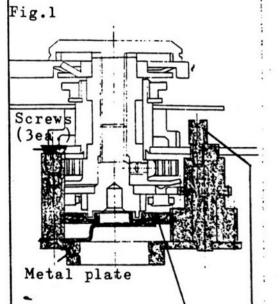
KEY POINTS IN ASEMBLING

long lever, of the mirror box.

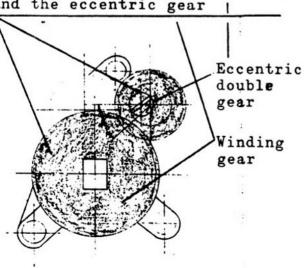
(Refer to page 22) .

IMPORTANT:

Differing from the RE Super 46A, there are no difference in focusing planes before and after winding action.


Winding Assembly Plate

- Assembly of the eccentric double gear. (Fig. 2)
 Point in the direction of A angle.
 Within the range of A = 45.
- 2) Assembly of the winding gear.


 Assemble without changing the position of the eccentric double gear.

 (Fig.2)
- 3) Attachment of the bottom plate. (Fig.1)

Fix with three screws.

Relation of the square opening and the eccentric gear

Shutte button cover Tod (71)1024T)

Tool should not be in

lock lever

contact shutter relase

KEY POINTS IN ASSEMBLING

(Fig.1)

Shutter Release Lock Lever

Insert the shutter release lock lever in the self-timer assembly base, while, at the same time, inserting the click-stop ball.

Insert the spring, shutter release shaft, shutter release button and, finally, while pressing the shutter button, screw in the shutter button cover and fix firmly.

Use the special tooling wrench

71A 1024-T for the purpose of screwing the shutter button cover in securely. When doing so, however, see that the tooling wrench does not touch the shutter lock lever. (Fig. 2)

CHECKING PROCEDURES

smoothly.

2) The shutter lock lever must click

1) The shutter lock lever must operate

- clearly.

 3) Play of the shutter release button
- must be about 0.1 to 0.2mm.
 4) Shutter release button must
- 4) Shutter release button must operate smoothly, when released quietly, and must not catch.

SKETCH

Fig.1

Fig.2

BLACK

KEY POINTS IN ASSEMBLING

Exchange of the CdS Photo-Cell

This section covers exchange of the CdS photo-cell without disassembling

the mirror box from the camera body.

Disassemble the Super D, as per instructions on page 1 (front cover

plate and left top cover plate;, page 3 (exposure meter) and page 7 (triangular prism), before proceeding

with the following. 1) Detach the lead wires of the CdS Photo-cell.

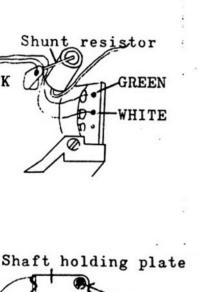
Unscrew three screws.

a) Disconnect one side of the shunt resistor. b) Disconnect the black, green and white

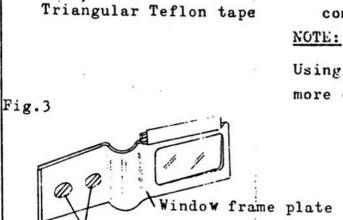
lead wires, by eliminating their solderings. (Fig. 1) 2) Detach the shaft holding plate.

NOTE: Moltoprene strips are attached on the edges indicated as www and their

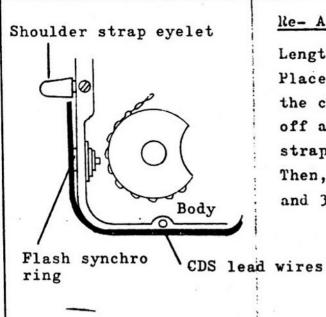
detachment will be rather difficult.


3) Loosen the two screws of the window

frame plate. (Fig.3) (Loosen only and do not detach completely.)


Using a long nose screwdriver will be

(Fig. 2)


more convenient.

Screws

Screws

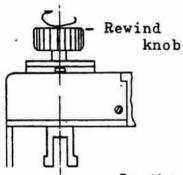
Re- Assembling

Length of the CdS lead wire:-Place the lead wires agaist the edge of the camera body, as illustrated, and cut off at a position before the shoulder strap eyelet.

Then, reassemble as per pages 33, 34, 35 and 36.

MAIN TROUBLES. THEIR ORIGINS AND REPAIRS THEREOF

1. Winding and Rewinding


1.1 Winding is impossible or very heavy

Reasons

- a. Biting of the rewinding shaft.
- b. Loosening of the rewinding shaft lead screws.
- c. Breakage of the coupling wire.
- d. Catching of the safety plate.
- e. Return claw slips off or does not catch upon winding action.
- f. Improper action of the clutch gear due to rust or dirt
- g. Foreign matter catching between the gears.
- h. Biting of the shafts.
- Shaft of the exposure counter eccentric gear is rusted.

Characteristics

In the case of a and b:-

- * In the case of a, there will be abnormal frictional resistance when the rewinding knob is rotated, without film loaded.
- * In the case of b, the rewind knob will not come up or thescrewhead will cause abnormal resistance, during rewinding action of the film.

In the case of c:

* Winding will not be possible.

In the case of d:

* Winding will also not be possible.

In the case of e:

* Winding will be impossible.

In the case of f, g, h, and i:

* Action will be heavy (without film) with winding action.
However, in the case of i, winding will not be smooth
or will be impossible.

Repairs

In the case of a and b:

- 1) Take off the front cover plate. (page 1)
- 2) Detach the left top cover plate. (page 1)
- 3) Disassemble the winding shaft.
- * In the case of a, clean off the foreign matter, dirt, etc., and apply greasc(Liqui-Noly Booster) to improve rotation.
- * In the case of b, apply Loc-Tite(yellow) to the thread of the lead screw and screw in securely.

In the case of c,d,e,f,g, and h:

- 1) Detach the bottom cover plate. (page 1)
- * In the case of c, change the coupling line.
- * In the case of d, check the safety plate andre-adjust. (Refer to page 20)
- * In the case of e, adjust the angle of the return claw or the opposing return lever so that there is no slippage with winding action.
- * In the case of f, dctach the clutch gear, clean off the rust or dirt, and apply a little oil to make operations more smooth.

NOTE: Wipe with an oil cloth only so that oil cannot get into the ball bearings.

- * In the case of g, check whether there is something caught between the gears and, if so, take it out.
- * In the case of h, apply grease(Liqui-Moly Booster) to the biting shafts.(Do not apply too much grease)

In the case of g, h, and i:

- 1) Detach the front cover plate. (page 1)
- 2) Detach the right top cover plate. (page 2)
- 3) Detach the winding shaft assembly. (page 14)
- * In the case of i, disassmble the shaft and apply grease(Liqui-Moly Booster).(Not too much)
- * In the case of g, check whether there is anything caught between the gears.
- * In the case of h, apply grease(Liqui-Moly Booster) to the shaft. (Do not apply too much grease)

1.2 Film cuts or rewinding action is very heavy.

ileasons

- a. Revolution of the rewind shaft is heavy.
- b. The return lever of the sprocket assembly does not move.
- c. The back cover is not applying sufficient pressure to the film cartridge.

Characteristics

In the case of a:

Abnormal frictional resistance is very large or revolution is impossible when the rewind knob is rotated without film.

In the case of b:

Rewind button on camera base pops up immediately when depressed.

In the case of c;

Spring height is less than 8mm.

Repairs

In the case of a:

- 1) Detach the front cover plate. (page 1)
- 2) Detach the left top cover plate. (page 1)
- 3) Disassemble the rewinding shaft and repair as in the case of a and b on page 44.

Rewind button

Release

travel

Bottom

cover

plate

In the case of b:

- 1) Detach the bottom cover plate. (page 1)
- 2) Check the return lever. (page 13) Adjust by bending the return lever so that the winding mechanism will be completely free (released) when the rewind button is depressed.

In the case of c:

1) Raise the cartridge pressure spring so that it is applying sufficient pressure to the cartridge.

Cartridge pressure spring Back cover

1.3 Film is Scratched

Reasons

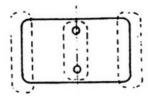
- a. The pressure plate is not smooth.
- b. The cartridge is at fault.
- c. Scratches are made during development of the film.

Characteristics

In the case of a:

Compare the surface of the pressure plate agaist the developed negative.

In the case of b and c:


Scratches which cannot be judged as being produced by the pressure plate must be considered as being made by a defective cartridge or during film development.

Repairs

In the case of a:

1) Check the pressure plate.

If there are pointed ridges in the areas encircled by the dotted lines (see illustration) chances of scratches on the film are great and, therefore, the pressure plate should either be replaced or the points cleaned off and smoothened.

Pressure plate

1.4 Exposure Counter does not Advance or does not

Return

Reasons

- a. Improper actions of the driving claw and/or fixed pawl.
- b. Movement of the exposure counter has slowed down because of oil flow on the winding assembly plate.
- c. The fixed pawl is under the ratchet gear.
- d. The driving claw slips off the ratchet when driving the exposure counter.
- e. Return action is slowed down because of the returning spring being twisted inside the exposure counter assembly.
- f. Action of returning spring is slow because of excess binding agent flow-out from between the exposure counter scale plate and the ratchet gear.
- g. Improper relationship between claw and pawl.
- h. Improper action of the seesaw lever.
- i. Springs of the driving claw and/or fixed pawl detached.

Repairs

In the case of a:

Bend the spring so that it works properly.

Check by changing the position of the eccentric gear.

In the case of b:

Wipe the winding assembly plate and inside surface of the ratchet gear with benzine or alcohol.

In the case of c:

Bend the tip of the fixed pawl slightly so that it cannot get under the ratchet gear.

In the case of d:

Bend the tip of the driving claw slightly so that it cannot slip the ratchet gear.

In the case of e:

Lengthen the spring slightly by pulling it vertically and re-attach.

In the case of f:

Wipe off the excess binding agent with solvent (acetone or Ketone).

In the case of g:

Refer to Assembly of the Exposure Counter on page 28.

In the case of h:

Adjust with washers (under the eccentric ring).

In the case of i:

Bend the springs so that they will not become detached.

- 2. Shutter Mechanism
- 2.1 The shutter release button cannot be depressed.

Reasons

- a. The clutch gear is rusted and cannot move (See page 23 Fig. 1)
- b. Catching of the safety plate. (See page 20 Fig. 3)
- c. Incorrect positioning of the shutter release button.
- d. Detachment of screws, etc.
- e. Faulty shutter lock mechanism.

Repairs

In the case of a and b:

Same adjustment as those made for a and f of section 1.1.

In the case of c:

Detach the shutter release button and re-assemble correctly.

In the case of d:

Take the self-timer assembly apart and check inside the body for loose screws; etc.

In the case of e:

Repair by bending the protrusion of the shutter lock lever.

2.2 Shutter curtains run across but do not open (at 1/1000 and 1/500 sec.)

Reasons

- a. Wrong clearance between release claw and second curtain claw. (See page 19 Fig. 4)
- b. Poor catching action of the first curtain stopper.
 (See page 19 Fig. 5)
- c. Either first curtain is extremely slow or second curtain is extremely fast.
- d. Release of clutch gear is slow. (See page 24 Fig. 1)
 Repairs

In the case of a and b:

1) Take the base plate apart and adjust the eccentric ring so that the first curtain stopper will catch when the winding lever is advanced.

(See page 19 Fig.3)

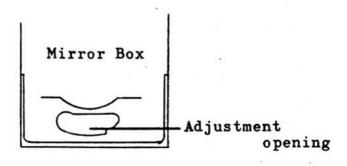
Lock-lever

2) If the adjustment noted in the preceding 1) does not repair the trouble, then it is understood that clearance between the release claw and second curtain claw is not correct.

Therefore, take the right top cover plate off and re-adjust the clearance between the release claw and second curtain claw.

(See page 19 Fig. 4 and 16) Space between release claw and second curtain claw.

In the case of c:


- 1) Take off the base plate. (page 1)
- 2) Reverse the second curtain ratchet about 1/2 revolution so that the shutter will open on 1/500 second.
- 3) Adjust the running time of the first curtain.
 Use the shutter tester and set to 15 ±0.5 m.s.
- 4) Wind the second curtain ratchet in until exposure time is uniform.

NOTE:

Adjusting the running time of the first curtain will result in changing the time-lag of the shutter which must also be checked.

In the case of d;

- 1) Take the base plate apart. (page 1)
- 2) Take the front cover plate apart. (page 1)
- 3) Adjust release of clutch gear and T-lever; through the adjustment opening of the mirror box. (page 24)

2.3 Non-Uniformity of shutter speeds (at 1/1000 and 1/500 sec.)

Reasons

a. Imbalance of spring tensions.

Repairs

If closing action of the shutter is faster than the opening action, then wind in the second curtain ratchet.

However, the speed of the first curtain must be checked to see whether it is 15 ±0.5 m.s.

2.4. Fast shutter speeds (1/1000 & 1/500 sec.) are too fast or too slow

Repairs

- 1) Take the right top cover plate apart. (page 2)
- 2) Re-adjust, (Sec 3) Shutter Speeds, on page 26.)
- 2.5 Slow shutter speeds (1/30 to 1 sec.) are too slow or too fast.

Repair

- 1) Take the right top cover plate apart.
- 2) Adjust the slow shutter speed adjusting lever.
- 2.6 Specific shutter speeds are too slow or too fast.
 Repairs
 - 1) Take the right top cover plate apart. (page 2)
 - -2) Disassemble the shutter speed cam assembly. (page 5)
 - 3) Adjust by harmering out or filing down the high speed cam or low speed cam.

Bend

Slows down

Speeds up

Slow shutter speed adjusting lever

2.7 Faulty Contact or Short-Circuiting of Flash Synchronization

Reasons

- a. Detached soldering.
- b. Short-circuiting.
- c. Faulty contact.

Repairs

Check point by point, from the central section of the synchrosettings, with a tester, following the flash circuit wiring diagram. (See page 60)

2.8 Incorrect Time-Lag of the Synchro-Settings.

Repairs

- 1) Take off the base plate. (page 1)
- 2) Bend the contact plate and re-adjust. (See page 26 Fig. 3)
- 2.9 Electronic Flash does not illuminate although there is no faulty contact or short-circuite in the flash synchronization system.

Réason

a. Insulation resistance is weak (at the attachment points of the safety contact and X-setting.)
Standard is 20 M Ohm and higher at 500V.

Repair

- 1) Take off the base plate. (page 1)
- 2) Dip a brush into ether or alcohol and clean the the attachment points of the safety contact and X-setting; dry with the heat of the soldering iron.

2.10 Faulty Self-Timer action.

Reason

a. Rust or dirt.

Repair

- 1) Disassemble the self-timer. (page 9)
- 2) Wash with gasoline.
- 3) Apply a very small amount of watch oil to the revolving shaft.
- 4) Exchange in the case of rust, etc, which cannot be eliminated.

2.11 Defective Shutter Curtain

Repairs

- 1) Take the front cover plate off. (page 1)
- 2) Take the base plate off. (page 1)
- 3) Take the left top cover plate off. (page 1)
- 4) Take the right top cover plate off. (page 2)
- 5) Disassemble the exposure meter. (page 3)
- 6) Diascemble the shutter speed cam assembly. (page 5)
- 7) Disassemble the slow shutter speed assembly. (page7)
- 8) Disassemble the triangular prism. (page 7)
- 9) Disassemble the mirror box. (page 7)
- 10) Dismentle the tripod socket plate. (page 9)
- 11) Disassemble the shutter assembly. (page 10)
- 12) Strip either the first or second curtain, in the first place.
- 13) Clean the binding surface oil and/or dirt, by wiping it clean.
- 14) Replace with a new shutter curtain.

NOTE:

The amount of overlap of the first and second curtains should be 3mm or the width of the frame.

2.12 Shutter does not close on B(bulb)

Reason

a. Insufficient stroke of the safety lever. (See page 20 Fig. 4)

Repairs

- 1) Take the base plate off. (page 1)
- 2) Wipe the clutch gear and shaft and apply a very small amount of oil; then, bend the spring plate to make it slightly stronger.

- 3. Quick-Return Mechanism of the Reflex Mirror
- 3.1 Mirror rises with film winding lever action.

Reasons

- a. T-lever returning spring is weak. (71A 3013)
- b. Displacement of the T-lever limiting eccentric ring
- c. Release clutch lever is displaced.
- d. Rotary action of the aperture ring is heavy.

Repairs

In the case of a:

Bend the tip slightly to strength the action.

In the case of b:

Re-adjust. (See page Fig. 1)

In the case of c:

Rc-adjust. (See page 22 Figs. 1, 2, and 3.)

In the case of d:

Improve action of the diaphragm lever (but do not bend).

3.2 Shutter is not activated although mirror swings up, when the shutter release button is softly depressed.

Reason

In correct interval between release of clutch gear and release of T-lever.

Repair

- 1) Detach the front cover plate and bottom cover plate. (page 1)
- 2) Re-adjust. (See page 24 Fig. 1)
- 3.3 Mirror stops midway during swing-up when the shutter release button is depressed.

Reason

Incorrect catching position of the crank lever.

Repair

Re-adjust. (See page 19 Fig. 2)

- 4. Finder
- 4.1 Incorrect Focus of the Finder.

Repair

- 1) Re-adjust. (See 3 Adjustment of Finder Focusing plate, on page 37)

 Coarse adjustment should be made with washers.

 Fine adjustments should be made by adjusting the mirror angle.
- 4.2 Focus error before and after Film Winding Action.
 Reason
 - a. No clearance between long lever and T-lever.
 Repair
 - 1) Re-adjust. (page 22)
- 4.3 Non-uniformity of focus over the finder field.
 Reason
 - a. Incorrect angle of the mirror.
 Repair
 - 1) Adjust correctly to 45°, by auto-collimation.
 - 2) Or, view the Flat Test Chart through the finder and adjust the mirror angle so that focusing error is eliminated.
- 4.4 Focus shift when the diaphragm lever is activated.
 Reason

The T-lever returning spring (71A 3013) is weak. Repair

Bend the tip slightly to make the action stronger.

5. Exposure Meter

Since it is extremely difficult to correctly determine the reason for a defective exposure meter, it is recommended that a careful check be made of the characteristics of the trouble before disassembling the exposure meter.

Characteristics

- a. Meter indicator does not move at all
- b. Indicator twitches when the shutter speed dial is rotated and is unstable.
- c. Indicator moves with film winding action and is unstable.
- d. Indicator moves when the switch shaft is moved with switch-on and is unstable.
- e. Check at three positions with the Exposure Neter Tester.

EV6 and EV15 are -3 steps.

EV11 is -6 steps.

EV6 and EV11 are normal.

EV15 is -5 steps.

5.1 <u>Meter indicator does not move at all</u> Reason

- a. Battery
- b. Black CdS lead wire is broken.
- c. Exposure meter coil is broken or soldering is detached.
- d. Short-circuiting between the minus side of the battery and the exposure meter.

 Repair

In the case of a:

1) Exchange battery.

Clean the contact section of the battery and
bend the contact plate slightly so that contact

is good.

In the case of b, c, and d:

- 1) Take off the front cover plate. (page 1)
- 2) Take off the left top cover plate. (page 1)

- 3) Check breakage of the exposure meter coil or the soldering with a tester.
- 4) Check breakage and short-circuiting between the battery's minus pole and exposure meter, with a tester.

Exposure meter

5.2 <u>Indicator twitches when the shutter speed dial is</u>
- rotated and is unstable.

Reason

Poor contact (top side) or grounding (bottom side) of the exposure meter.

Repair

- 1) Take off the front cover plate. (page 1)
- 2) Take off the left top cover plate. (page 1)
- 3) Wipe the contact points of the exposure meter and exposure meter holder with ether or alcohol to clean them of dirt andbend the contact plate slightly to improve contact.
- 5.3 Indicator moves with film winding action and is unstable, or is unstable with shutter release action.

 Reasons
 - a. Breakage of the CdS lead wires.
 - b. Defective soldering of the CdS lead wires and electrodes.
 - c. Short-circuiting of the CdS lead wires and/or electrodes.

Repair

Exchange with a new CdS photo-cell layer.

IMPORTANT

Since this repair is not only time-consuming but very difficult, it is recommended that other parts be checked first of all, in order to eliminate the possibilities of a mistaken repair.

Cther Points to be Checked (Refer to wiring circuit):

- 1) R3, R4 and R5 resistors.
- 2) Contact of exposure meter. (Check by changing meters.)
- 3) Internal resistance(1.2K) of the exposure meter. (Check by changing meters.)
- 4) Soldering of the wiring cicuit.
- 5) Contact of the battery. (Check by changing batteries.)
- 6) Improper contact of the switch.
- switch-on, and is unstable.

Reason

a. Improper contact of the switch.

Repair

- 1) Take off the base plate. (page 1)
- 2) Exchanging the switch.
- 5.5 Measurement results of the exposure meter are

 -3 steps for EV6 and EV15 and -6 steps for EV11

Reason

The above measurement results indicate that there is a breakage in the white CdS lead wire.

Repair

- 1) Take off the front cover plate. (page 1)
- 2) Take off the left top cover plate. (page 1)
- 3) Check soldering of the white lead wire between resistor R4 and the CdS photo-cell layer; if soldering is loose or detached, re-solder firmly.
- 4) If there is breakage in the lead wire at a point inside the opening of the mirror box or at the CdS electrode section, exchange the mirror box or CdS photo-cell layer.
- for EV6 and EV11 but -5 steps for EV15.

Reason

The above measurement results indicate that there is a breakage in the green lead wire.

Repair

· Same as for the preceding 5.5 section.

5.7 Measurement results indicate disorder which is stable and can be re-adjusted (approximately ±1.5 step).

Repair

- 1) Take off the front cover plate. (page 1)
- 2) Take off the top left cover plate. (page 1)
- Re-adjust. (See 1) Adjustment of error inclination, and 2)

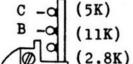
Exposure meter revolution, on page 36.)

NOTE:

Fine adjustments (of the eccentric shaft) of the exposure meter can be made without detaching the left top cover plate.

5.8 Measurement results are not those abovenoted and the disorder is beyond re-adjustment.

Reasons


Resistance

Plate

- a. Changes in the resistors R3, R4 and R5.
- b. Improper deflection of the meter.
- c. Changes in the CdS photo-cells. Repairs.

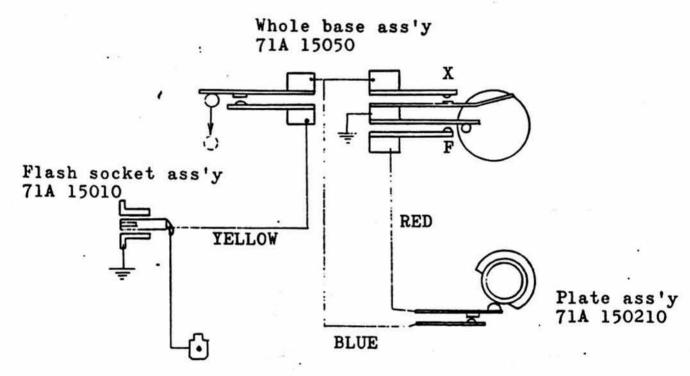
In the case of a.

- 1) Take off the front cover plate. (page 1)
- 2) Take off the left top cover plate. (page 1)

3) ...ck resistance with a tester (after detaching the soldering on the white and green CdS lead wires). Resistance between A and B =2.8 + 11 = 13.8 K

Resistance between A and C = 2.8 + 5 = 7.8 K

4) Exchange if resistance values are not as abovenoted.


In the case of b:

If mius with the shunt resistor detached, them exchange for an exposure meter which has a larger deflection angle with the same current.

In the case of c:

Finally, if the CdS photo-cell layer is defective, it must be exchanged.

FLASH SYNCHRONIZATION SKETCH

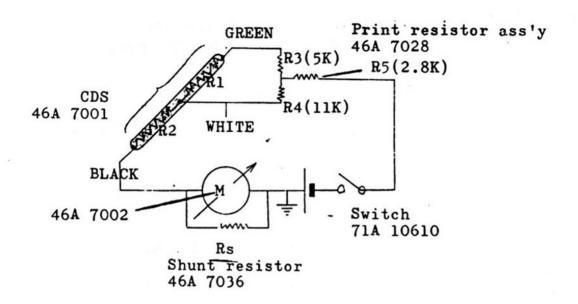
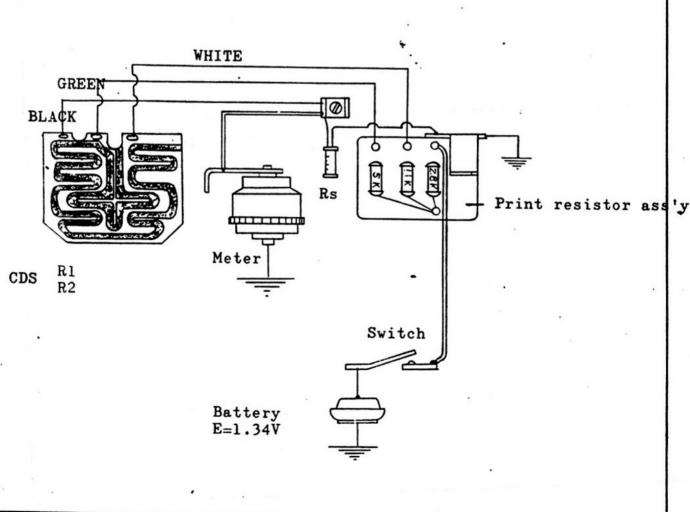
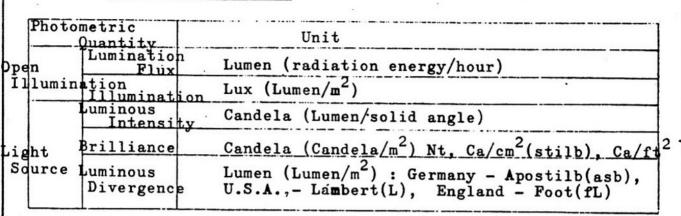


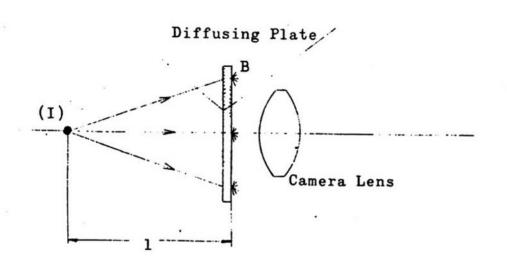
Table 1

INSPECTION STANDARD FOR SHUTTER

Nominal Shutter Speed	Standard Value (millisecond)	Tolerance (millisecond)	Remarks
1	. 1000	760 –1320	
2	500	380 - 660	. *
4	250	180 - 330	<u>+0.4 Step</u>
8	125	95 - 165	(+32%, -24%)
15	62.5	47.5- 82.5	
30	32.1	24.4- 42.5	
60	15.6	16.6- 20.6	+0.4 Step(+32%) -0 Step(-0%)
125	7.81	5.15 -11.7	-0 Step(-0%) +0.6 Step
250	3.91	2.58 - 5.95	(+52%, -34%)
500	1.95	1.28 - 2.96	
1000	0.976	0.65 - 1.48	±0.6 Step

EXPOSURE METER SKETCH


Table 2

Conditions for Exposure Combination at the Measuring Points (Measure at 3 points):

Brightness of Diffusion Plate	EV a	nd its	Combinatio	ons Toleranc	е
$B(cd/m^2)$	EV	ASA	Speed	F/Number	(EV)
8.0	6	25	1/2	2.8	<u>+</u> 0.8
256	11	25	1/60	2.8	<u>+</u> 0.8
4096	15		1/1000	2.8	<u>+</u> 0.8
	•				

UNIT OF BRIGHTNESS

A=F/number

B=Screen brilliance

S=Film speed (ASA)

I=Brilliance (cd/m²)

l=Distance(meter) between the lamp filament and the screen surface.

t=Transmittance of diffusing plate

K=Constant

$$B = \frac{tI}{\pi L_1^2}$$

$$= K \frac{A^2}{TS} \times 10.76$$

$$= K \frac{2EV}{S} \times 10.76$$

 $=0.125 \times 2EV$

$$=$$
 2 EV-3

T=Exposure Time

EX. if K=1.162, S=100

TABLE OF BRILLIANCE AND LUMINOUS DIVERGENCE

+2						
Foot-Lambert	4 × 10 ⁻⁴	F F	E	m x 10 ⁴	, L	
cd/ft ²	m x 10 ⁻⁴	! E	티	m x 10 ⁻⁴		- \
Lambert (L)	ħ	ار × 10	104		A × 10 ⁻⁴	$\frac{1}{m} \times 10^{-4}$
Apostilb (asb)	元 × 10 ⁴	12		104	k ∈	- E
cd/m ² (nt)	104		_\ ⊬	1 x 104	- E	- þ
Cd/cm ² (stilb)		10	1 -元×10 ⁴	- -	$\frac{1}{m} \times 10^{-4}$	Foot-Lambert 1 x 10-4 (fL)
	Cd/cm ² (stilb)	cd/m ² (nt)	Apostilb (asb)	Lambert (L)	cd/ft ²	Foot-Lambe (fL)

ex. $lcd/m^2=10^4 \times cd/cm^2$ $lcd/m^2=m\mathbf{K}\mathbf{K}Foot-Lambert$

 π =3.1416 m=(0.3048)²=0.0929

=0.3183

LM=0.2919

TOOL NO	NAME	SKETCH	RELEVANT PARTS	PURPOSE
AA 0108	Clamp wrench	176	71A 2066	For Disassembling and Assembling
32A 1037- T 7	Nut driver	. 50	32A 1037	For Disassembling and Assembling
AA 0101 _.	Coin driver		32A 1072 46A 1072	For Disassembling and Assembling
32A 1330-T	Rewind shaft holder		32A 10330	For Disassembling and Assembling
32A 1503-T	Flash socke ring plate wrench	t S	32A 1503	For Disassembling and Assembling
71A 2063-T	Right top-cover plate nut driver	200	71A 2063 ÷	For Disassembling and Assembling
71A 2093-T	G-ring plier		71A 2093	For Disassembling and Assembling
71A 3001-T		200	71A 3001	For Disassembling and Assembling
32A 3032-T	Gear shaft special screwdrive		32A 3032	For Disassembling and Assembling
32A 4008-T	Pushing plate for spring	t=0.8	32A 4008	Assembly of lens locking lever

TOOL NO.	NAME	SKETCH	RELEVANT PARTS	PURPOSE
46A 5090-T	Tooling set screw	M1.4	71A 50090	For Disassembling and Assembling
32A 8003-T	Eyepiece plate wrench		32A 80030	For Disassembling and Assembling
56A 3053-T	Screwrdiver	1	56A 3053	For Disassembling and Assembling
AC 0101	Rail gauge			Adjustment and Inspection of Flange Focal Distance
AB 0101	Mount gauge A	44.7		Adjustment and Inspection of Flange Focal Distance
AB 0201	Mount gauge B			Adjustment and Inspection of Flange Focal
71A 1024-T	Shutter button plier	16.9	71A 1024	For Disassembling and Assembling
32A 9023-T	Special screw driver		•	For Disassembling and Assembling